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Abstract: In a previous paper, two of the authors presented a ”regulated” picture of

eternal inflation. This picture both suggested and drew support from a conjectured dis-

continuity in the amplitude for tunneling from positive to negative vacuum energy, as the

positive vacuum energy was sent to zero; analytic and numerical arguments supporting

this conjecture were given. Here we show that this conjecture is false, but in an interesting

way. There are no cases where tunneling amplitudes are discontinuous at vanishing cosmo-

logical constant; rather, the space of potentials separates into two regions. In one region

decay is strongly suppressed, and the proposed picture of eternal inflation remains viable;

sending the (false) vacuum energy to zero in this region results in an absolutely stable

asymptotically flat space. In the other region, we argue that the space-time at vanishing

cosmological constant is unstable, but not asymptotically Minkowski. The consequences

of our results for theories of supersymmetry breaking are unchanged.
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1. Introduction

The possibility that the universe inflates eternally, to create an infinite and complex mixture

of causally disconnected inflating and non-inflating regions, is one of the most interesting

and perplexing ideas to emerge in cosmology. In a recent paper [1], two of us (TB and

MJ) presented a picture of a large class of eternal inflation models that greatly simplifies

their analysis by viewing the eternally inflating universe as a finite system comprised of

the causal diamond of a single observer.

This picture, which has consequences for the Landscape idea as well as for models of

low-energy supersymmetry breaking, both suggested and gained support from an interest-

ing new result in the dynamics of true-vacuum bubble nucleation as described by Euclidean

instanton techniques. In particular, it was found that in a certain class of potentials, the

instanton action for a transition from positive (false) to negative (true) vacuum energy

did not tend to infinity as the false vacuum energy VF was reduced to zero, as would be

required to give a finite nucleation probability1 and hence accord with intuition regarding

the decay of Minkowski space to a negative vacuum (“big crunch”) space. This result was

supported by general analytic arguments, as well as numerical results for ε ∼ 1, where ε

controls the scale in field value over which the potential varies. On the basis of these results

it was conjectured that

1As VF → 0, the required background subtraction becomes infinite, requiring an infinite instanton action

to cancel it and leave a finite decay probability.
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1. The same behavior holds at ε ¿ 1, and

2. for VF ≡ 0, a second (non-compact) instanton, like the one found in the absence of

gravity, exists which allows much faster decay, so that

3. for all ε there is a discontinuity in the decay rate as VF → 0.

In this paper, we will demonstrate that while

xT

xH

xF

Figure 1: The potential V (φ), with the

true vacuum xT , the false vacuum xF

and the “Hawking-Moss” point xH la-

beled.

the specific calculations presented in [1] are cor-

rect, the above conjecture is not2. Instead we find

that the space of potentials is partitioned by a Great

Divide, into one class where Minkowski space is un-

stable, and a second class where the tunneling rate

is indeed suppressed — as argued in [1] — by the

factor e−π(RMP )2 (where R is the de Sitter radius

corresponding to the false vacuum), and hence van-

ishes at VF = 0. The stability, for some potentials,

of a seemingly metastable Minkowski vacuum was

noted long ago by Coleman and De Luccia [3] in

the thin-wall limit and subsequently discussed by

several authors [4, 5] outside of that limit.

In sections 2-4 we will review the instanton formalism, give approximate analytic so-

lutions, then examine the behavior of the instanton solutions in the limit where VF → 0,

using both analytic and numerical techniques. After elucidating the actual behavior of

the instantons, we will argue in section 5 that the Great Divide consists precisely of those

potentials which, in the VF → 0 limit, have static domain walls interpolating between the

true and false stationary points of the potential3; we also argue that the Great Divide is

appropriately named because its codimension in the space of potentials is one. In sections

6 and 7, we will discuss our results in connection with the picture of eternal inflation put

forward in [1]. In section 6, we will argue that it is inappropriate to think of potentials de-

scribing unstable Minkowski space as having to do with quantum gravity in asymptotically

flat space, then discuss what they may, instead, correspond to. In section 7, we comment

on the implications of potentials above the Great Divide for the string theory landscape.

A brief summary of our conclusions is given in section 8.

2. Field equations

In this paper, we will study a single scalar field with potential of the form

V (φ) = µ4v (φ/M) , (2.1)

2R. Bousso, B. Freivogel and M. Lippert, have discovered this fact independently [2].
3This observation is related to the work of Cvetic et. al. on singular domain walls and their relation to

CDL bubbles [6].
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where, defining x ≡ φ/M , the dimensionless potential v(x) is given by

v (x) = f (x) − (1 + z) f (xF ) , (2.2)

where here and henceforth subscripts “T” and “F” will label values at the true and false

vacuum, respectively (see figure 1), and where

f(x) =
1

4
x4 − b

3
x3 − 1

2
x2. (2.3)

We will tune the parameter b such that the potential has three extrema as shown in

figure 1, and has variations of order 1 between xF and xT . The non-negative parameter

z controls the false vacuum cosmological constant VF , so that VF → 0 as z −→ 0.4 The

general scaling form of the potential is motivated by considerations of naturalness. Typical

potentials which cannot be fit into this form have fine-tuned dimensionless coefficients and

are not stable to radiative corrections.5

For many choices of the parameters b and z, there will be 0(4) invariant instantons,

which travel between the basins of attraction of the minima at xT and xF . Together with

a scalar field configuration, φ(z), the instanton is described by an Euclidean manifold of

the form

ds2 = dz2 + ρ2(z)dΩ2, (2.4)

where dΩ2 is the surface element of a unit 3-sphere. Defining the following dimensionless

variables:

r ≡ µ2ρ

M
, (2.5)

s ≡ µ2z

M
, (2.6)

ε2 ≡ 8πM2

3M2
P

, (2.7)

the coupled Euclidean scalar field and Einstein’s equations are

ẍ +
3ṙ

r
ẋ + u′ = 0, (2.8)

ṙ2 = 1 + ε2r2E, (2.9)

where u(x) ≡ −v(x), primes and dots, respectively, refer to x− and s−derivatives, and E

is the Euclidean energy of the field, defined as

E =
1

2
ẋ2 + u(x). (2.10)

4The way in which we have chosen to tune the vacuum energy is not really appropriate in many super-

gravity models. There, one tunes a constant in the superpotential. If there are excursions in field space of

order mP , this changes the potential in a more complicated way than a simple subtraction. We hope to

return to a study of supergravity models in a future publication.
5The major exception we know of is the case of moduli in string theory near singular points in moduli

space: while the typical potential for moduli depends on φ/mP or φ/mS, near singular points (where other

degrees of freedom become light) the potential can have more rapid variation.
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For future reference, the dynamics of the Euclidean energy are determined by the equation

Ė = −3
ṙ

r
ẋ2. (2.11)

When the false vacuum well has positive energy, the Euclidean spacetime of eq. 2.4 is

necessarily compact, spanning an interval between s = 0 and s = smax. To avoid singular

solutions to eq. 2.8, the field must have zero derivative (i.e. ẋ = 0) at s = 0 and s = smax.

There will thus be a non-singular solution to the instanton equations if the boundary

conditions

r(0) = 0, r(smax) = 0, ẋ(0) = 0, ẋ(smax) = 0, (2.12)

can be met for some set of endpoints in the evolution of x near xT and xF . Solutions

with two zeros in ẋ will be referred to as “single-pass” instantons. We also note [5] that

multifield models can be studied using these methods as well, as long as we restrict attention

to instantons for which φ̇i = 0 only at two points. In that case, however, one might be

interested in potentials with more minima and maxima.

The decay rate of the false vacuum is given by

Γ = Ae−SE , (2.13)

where A is a pre-factor that will be neglected in what follows. The total Euclidean action,

SE , is the difference between the action of the instanton, SI , (which is negative due to

the positive curvature of the instanton) and the action of the background spacetime, SBG

(which is negative and larger in magnitude than the instanton action)

SE = SI − SBG. (2.14)

The instanton action is given by

SI = −4π2

(

M4

µ4

)
∫ s=smax

s=0
ds

(

r3u +
r

ε2

)

. (2.15)

The background subtraction term (for an end-point of the evolution in x near xF ) is given

by

SBG =
8π2

3ε4uF
. (2.16)

In what follows we will be interested in the relative magnitude of the instanton and

background actions. In particular, when the false vacuum cosmological constant is taken

to zero, the backgound subtraction term eq. 2.16 diverges. Unless the instanton action

scales similarly, the tunneling rate is very strongly suppressed for small uF .

3. Approximate analytic solutions

We can solve eq. 2.8 and 2.9 exactly when the Euclidean energy remains approximately

constant for a period of time. This can only occur in the neighborhood of the extrema of

the potential. The focus of this study is on transitions from a positive Euclidean energy

– 4 –
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well at xT to a negative Euclidean energy well at xF , but the results we present below

can be used to study arbitrary combinations of positive and negative energy wells. The

approximate solution to the instanton equations near xH (see figure 1) was presented in [7],

and is relevant for the study of oscillating solutions.

Consider the evolution of the field in the neighborhood of xT or xF . The field will

begin/end with zero velocity and some displacement, δT,F , from xT or xF . If the variable

δT,F is small, then the field will loiter in the neighborhood of the maximum. During this

time, the Euclidean energy of the field will remain roughly constant and, if the velocity

remains small, equal to the value of u at the maximum. Equation 2.9, for the cases of

loitering near the true or false vacuum maxima, then reduces to

ṙ2 ' 1 + ε2r2uT,F , (3.1)

which can be integrated to yield

r(s) =
1

ε
√−uT,F

sin
(

ε
√

−uT,F

)

. (3.2)

If we take the false vacuum maximum to have uF < 0, then we can recognize this as the

metric for Euclidean de Sitter space (the four sphere). Substituting Eq 3.2 into eq. 2.8

yields:

ẍ + 3ε
√

−uT,F cot
(

ε
√

−uT,F s
)

ẋ + u′(x) = 0. (3.3)

Since we are trying to find solutions only in the vicinity of the true and false vacuum

maxima, we may Taylor expand the potential about xT,F , keeping only the constant and

quadratic terms. After making the change of variables y = cos
(

ε
√−uT,F

)

and δ = x−xT,F ,

we then obtain
(

1 − y2
) d2δ

dy2
− 4y

dδ

dy
+

ω2

ε2uT,F
δ = 0, (3.4)

where ω2 ≡ |u′′
T,F |. This can be recognized as the hyperspherical differential equation, the

solution of which is given in terms of Legendre functions. After imposing the boundary

conditions δ̇(y = 1) = 0 and δ(y = 1) = δT,F , we obtain

δ(y) =
−2iδT,F

ν (ν + 1)

(

y2 − 1
)−1/2

P 1
ν (y), (3.5)

with

ν = −1

2

(

1 +

√

9 +
4ω2

ε2uT,F

)

. (3.6)

For s ¿ ε
√

|uT,F |, this solution can be written in terms of Bessel functions.

We have found an approximate analytic solution near the true and false vacuum max-

ima. However, in order to construct the entire single-pass instanton we must evolve across

regions of the potential in which our approximations break down. This requires a numerical

approach, which will be presented in section 4.2.

– 5 –
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4. The VF → 0 limit

We are now in a position to re-examine some of the conclusions of [1]. Two of the authors

(TB and MJ) conjectured that for all ε the instanton describing a transition from a positive

energy false vacuum to a negative energy true vacuum approaches a finite size as z → 0,

and therefore the instanton action would not scale with the background subtraction term.

We argued (to ourselves) that there would also be a flat space instanton which existed

for z = 0, by a version of Coleman’s overshoot/undershoot argument. This implied a

discontinuous limit as the false vacuum energy was sent to zero.

Here, we will present numerical and analytical arguments that below some (potential

dependent) εc there are in fact large dS instantons that asymptote as z → 0 to the flat

space instanton. Above εc, there are finite-size instantons with finite action as z → 0, but

no flat space instanton. At εc (on the Great Divide), we will find that the instanton for

z = 0 is a static domain wall solution of the coupled Euclidean Einstein and field equations.

4.1 Small ε

Let us explore the small ε case first, and argue that if a single-pass instanton exists, it

must resemble the dimensionless de Sitter metric, eq. 3.2, over most of its volume. From

eq. 2.9, we see that the Euclidean energy, which is bounded from below by the value u(xH)

of the potential at the Hawking-Moss maximum, must be negative for a turn-around in r

to occur. If there is a turn-around, the value of r at this point, rm, will be

rm =
1

ε
√
−Em

. (4.1)

Since the Euclidean energy is bounded, as ε is decreased, rm must increase. If there is a

compact nonsingular instanton, the field must evolve in such a way to facilitate this growth

in r. When the field is not in the vicinity of the extrema of the potential, it will move

between the potential wells in a time of order one. During this time, r will grow to some

ε independent size. Thus, for r to become large enough to find a turn-around in the small

ε limit, the field must loiter in the vicinity of one of the extrema of the potential.

Loitering near the Hawking-Moss maximum leads to an oscillatory motion, because

this is a minimum of the Euclidean potential. There are non-singular solutions which make

of order 1
ε oscillations before ending up in the basin of xF . These are not single pass

instantons. Loitering near the true vacuum maximum will cause r to grow as in eq. 3.2

(linearly if s ¿ ε
√

uT ). However, because the friction term decays during the loitering

phase, these solutions will in general have too much energy and overshoot the false vacuum

maximum. For intermediate values of ε, the growth in r near the true vacuum becomes

important, as we will see below.

The only viable option is then that the field be near xF at the turn-around in r. If we

take the end-point near xF to be at s = 0, the field must remain near xF until r = rm. This

evolution should be well described by the analytic solution eq. 3.5 derived in the previous

section. The Euclidean energy at rm will be given by

Em ' uF +
1

2
δ̇2
m − ω2

2
δ2
m. (4.2)

– 6 –
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We can write δm and δ̇m in terms of Gamma functions

δm = δ(s = π/2ε
√

vF ) = δF

√
π

Γ
(

1 − ν
2

)

Γ
(

3
2 + ν

2

) , (4.3)

and

δ̇m = δ̇(s = π/2ε
√

vF ) = −δF ε
√

πvF
2 + ν

Γ
(

1
2 − ν

2

)

Γ
(

2 + ν
2

) . (4.4)

This limit will be an important component of the numerical scheme presented in the follow-

ing section. We note that δm and δ̇m are of the same order of magnitude, and must be much

smaller in magnitude than vF for our approximation scheme to remain self-consistent. This

can always be arranged by making δF of order exp( −1
ε
√

vF
). Thus, we can see that there is

a self-consistent solution in the vicinity of xF which tracks the de Sitter solution until rm.

In fact, it is necessary, for small ε, to choose δF small enough that the de Sit-

ter/Legendre approximation remains valid until s = π
ε
√

vF
− o(1). If we do not do this,

then x(s) moves rapidly away from xF on a time scale of o(1), while r(s) is still À 1. It

will either overshoot xT or stop and fall back, long before the second zero of r(s) is reached.

In neither case do we get a single pass instanton. The rest of the instanton consists of a

traverse from the vicinity of the false vacuum, to the basin of attraction of the true vacuum,

in a time of o(1) (ε-independent for small ε). It is important that, since r ¿ 1/ε during

this traverse, eq. 3.1 indicates that r(s) is approximately linear in this period, and indeed

also linear for a long period before x(s) leaves the vicinity of the false vacuum.

It is convenient to think of the rest of the instanton as a function of a new time variable

t which starts at t = 0 near the true vacuum and increases toward the false vacuum so that

d/dt ≡ −d/ds. Since r(t) ≈ t when r ¿ 1/ε, we have

d2x

dt2
+

3

t

dx

dt
= −u′(x), (4.5)

with the boundary conditions dx
dt (t = 0) = 0 and xH < x(t = 0) < xT .

This equation is just the equation for an instanton in quantum field theory, neglecting

gravitational effects. Coleman [8] showed that one can find solutions which start in the

basin of attraction of the true minimum, and get arbitrarily close to (or even overshoot) the

false minimum. Eq. 4.5 is ε-independent, but as ε goes to zero, the range of t over which it

is a good approximation to the real instanton solution grows as 1/ε. Thus, for small enough

ε, we can use Coleman’s argument to show that there are solutions of eq. 4.5, which are

non-singular at t = 0 and penetrate into the region where the Legendre approximation is

valid. By varying the initial position x(t = 0) among all such solutions, we can tune the

logarithmic derivative of x at a given point t∗ where both approximations are valid, within

a finite range.

The conditions that the two solutions match at some point (t∗, s∗) are

t∗ =
1

ε
√

vF
sin(ε

√
vF s∗), (4.6)

1

x(s∗)

dx

ds
= − 1

x(t∗)

dx

dt
, (4.7)

– 7 –
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x(s∗) = x(t∗), (4.8)

where functions of s∗ are in the de Sitter/Legendre approximation and functions of t∗ are

in the zero-gravity approximation. Once we know that there is a range of x(t = 0) for

which x(t) penetrates into the range where the Legendre approximation is valid, we can

tune x(s = 0) to satisfy the last condition. We know that s∗ is large for very small ε, of

order π
ε
√

vF
− o(1), in which case the first condition becomes t∗ = s∗.

x(t = 0) is then tuned to match the logarithmic derivatives. Although there is a range

of s over which x(s) is rapidly varying, its logarithmic derivative is roughly constant over

that range. The only place where the logarithmic derivative is large, is near the second zero

of the sine, but for small ε the matching occurs far from that region (t∗ large but ¿ 1
ε
√

vF
).

It is thus plausible that by varying s∗ and x(t = 0) we can satisfy both of Equations 4.6

and 4.7. If this is the case, then a non-singular, large radius instanton exists. As vF → 0,

this goes over smoothly to an “instanton for the decay of asymptotically flat space”.

The argument above indicates the possibility of a true asymptotic matching of solutions

of the non-gravitational equations to solutions of the de Sitter/Legendre approximation

over a range of s which grows as ε → 0. Since we cannot exhibit solutions of the non-

gravitational equations exactly, our argument is not completely rigorous. In the next

section we will present numerical calculations, which show that it is correct.

4.2 Numerical results for small ε

To confirm the validity of the conclusions above, we have undertaken a semi-analytic search

for single pass instantons in a potential with a positive false vacuum and a negative true

vacuum. Here, we will focus on the potential shown in figure 2, though qualitatively

our results are potential independent (we have confirmed this by studying a variety of

potentials).

The strategy is to use the matching scheme dis-

-1 1 2
x

-0.5

0.5

1

vHxL

Figure 2: The potential, v(x), used for

the numerics. The parameter b is fixed

at b = 1, and z will be allowed to vary

(this plot shows z = 1).

cussed in section 4.1. We will relax the zero-gravity

approximation for the evolution from the true vac-

uum well to the false vacuum well, and numerically

evolve eqs. 2.9 and 2.8. To fix the initial conditions

of the numerical evolution from the true vacuum

side of the potential, we will use an analytic solu-

tion to evolve for the first time step. If it is near

xT , we use eq. 3.5; if not, we approximate the poten-

tial as linear, yielding a δ(s) ∝ s2. We then evolve

and attempt to match onto the de Sitter/Legendre

approximation (eq. 3.2 and 3.5) when the field ap-

proaches xF . Of course, we are not guaranteed to

find a match for all ε. It was shown by Coleman and De Luccia [3], that in the thin-wall

limit there are cases where the transition from a positive (Euclidean) energy well to a

zero energy well is forbidden. This occurs when the positive energy at the true vacuum

maximum becomes too small, so that an over-shoot solution becomes impossible. This

– 8 –
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would prevent the instanton from ever entering a regime where the de Sitter/Legendre

approximation was valid.

The need for a semi-analytic approach is evident from the fantastically small displace-

ment from the false vacuum required to find solutions with large rm. Numerically evolving

the solution over the entire trajectory would become impossible as the field approaches

xF . Also for reasons of numerical tractability, we match the solutions at at rm, where

s = π/(2ε
√

vF ), and the Legendre function can be written in terms of (calculable) Γ−
functions as in eq. 4.3 and 4.4.

This method also has its limitations. For small enough ε
√

vF , we may be trying to

compare field velocities at a precision that is not achievable by the numerical integrator.

Despite these difficulties, we have been able to construct a number of instantons in the

intermediate ε regime, examples of which are shown in figure 3. It can be seen in this

plot that as z → 0, these instantons are growing. Since we have shown that a matching

is possible at rm, as vF → 0, by the argument given in section 4.1, these instantons must

scale with the background subtraction term.

20 40 60 80 100 120
s

10

20

30

40

50

60
rHsL

Figure 3: Evolution of r(s) for ε = .72 and z = (.01, .008, .006) from bottom to top. The matching

between the analytic and numeric solutions occurs at the maximum of r, rm.

4.3 Large ε

To study large6 values of ε, where the approximations introduced above are not necessarily

valid, we must take an entirely numerical approach. We choose to begin the evolution from

the true vacuum side of the potential, varying δT until a solution is found. To fix the initial

conditions of the numerics, we will again use an analytic solution to evolve for the first

time step as described in the previous section.

6By large we mean of order one. While the formalism will accommodate arbitrarily large values of ε,

there will be an ε after which only the Hawking-Moss instanton exists.
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Shown in figure 4 is the evolution in x for ε = .85 as z → 0. Shown in figure 5 is

the evolution in r with the same parameters. It can be seen that as z → 0, the instanton

approaches a constant, finite size. Therefore, for large ε, the instanton action will not scale

with the background subtraction term.

To discuss the continuity of the limit VF → 0, we must first determine in which cases

there is an instanton for VF = 0. If this instanton describes the decay of a spacetime with

exactly zero cosmological constant, then the evolution in r must be from r(s = 0) = 0 to

r(s = ∞) = ∞. The field will be moving from some initial position near xT at s = 0 to

exactly xF at s = ∞. If, starting near xT , there is a region of δT -space in which over-shoot

occurs, then there must be a second zero in ẋ. The question is then what value r takes at

the second zero of ẋ.

In all of the numerical examples we have studied with z = 0, we find that r = 0 at

the second zero of ẋ. The turn-around in r in these cases is not caused by loitering in the

vicinity of a negative energy extremum of the potential. Instead, as the field is climbing

towards xF , the negative potential energy comes to dominate over the kinetic energy. Since

ε is rather large, r does not need to grow very large to cause a turn-around in r. Since

the end-points of this instanton are on the boundaries of the unique over- and under-shoot

regions of the potential, there is no other single-pass instanton with r(s = ∞) = ∞.

5 10 15 20 25
s

-0.5

0.5

1

1.5

xHsL

Figure 4: The evolution of x(s) for ε = .85 and z = (1, .1, .01, .001, .0001) from bottom to top.

The dashed horizontal lines indicate the positions xT (top) and xF (bottom) .

5. The Great Divide

In this section we show that, for any potential v(x), there is a critical value of ε for which

planar domain wall solutions exist. As one goes from the small to the large ε regime, there

is a transition point between the two behaviors discussed in section 4. We will define εc as

the transition point in the case where z = 0 (when the false vacuum well has zero energy).
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Figure 5: The evolution of r(s) for ε = .85 and z = (1, .1, .01, .001, .0001) from bottom to top.

We have found instantons (with z = 0) for a variety of ε near εc as shown in figure 6.

The evolution of the field is from the vicinity of xT at s = 0 to xF at s = ∞. Of course,

we cannot track the entire evolution, but we can follow it for some finite time scale by

tuning δT to approach the boundary between the under- and over-shoot solutions. It can

be seen from these numerical examples that r is growing very large in the vicinity of the

true vacuum.

As we approach εc, the initial displacement on the true vacuum side, δT , is decreasing

as shown in figure 7. Because we are starting with more energy on the true vacuum side

of the potential, we must send δF → 0 as well. Therefore, at this critical value of ε, the

instanton interpolates exactly between xT at s = −∞ and xF at s = +∞. Also, note that

after we analytically continue to the Lorentzian solution, the interior of the CDL bubble

will be infinitely large. This solution therefore describes a static domain wall.

We can understand this behavior by looking at the energetics of the evolution from

xT to xF . The instanton equations in the critical limit approach the static domain wall

equations

ẍ +
3ṙ

r
ẋ + u′ = 0, (5.1)

ṙ2 = ε2r2E, (5.2)

s now runs between −∞ and ∞, and a domain wall solution asymptotes to the two vacua

on opposite sides. The energy is always decreasing along the trajectory from the true to

the false vacuum well. The question is whether x can lose just enough energy during its

traverse to asymptote to xF without overshooting. If ε = 0 the answer is clearly no, because

energy is conserved. The solution overshoots the false vacuum. This persists for very small

ε. On the other hand, in the mathematical limit ε À 1, the friction term dominates the

motion and x undershoots in a finite time. It follows that there is a critical value of ε where
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Figure 6: The evolution of r(s) for z = 0 on either side of εc. Shown on the left are values of ε > εc

in blue (ε = (.8, .75, .745) from bottom to top) and εC ∼ .74 in red. The instantons with ε > εc are

compact, having two zeros in r. On the right are values of ε < εc (ε = (.7, .73, .735) from bottom

to top) in green and and εc in red. The instantons with ε < εc are not compact, with r → ∞ as

s → ∞.

0.1 0.3 0.5 Εc~ .74
Ε

0.02

0.04
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∆T

Figure 7: It can be seen in this plot of δT vs ε for the case where z = 0 that there is an εc for which

δT → 0. Below this value, δT is approaching the zero-gravity solution, and above it, δT → xT −xH .

x indeed asymptotes to xT and we have a static domain wall solution in the presence of

gravity. The critical value is clearly o(1). Since we have found such a solution by tuning a

single parameter, the codimension of the subset of potentials which have a domain wall is

1, and the subset forms a Great Divide in the space of potentials.

We have shown both that there is a critical value of ε at which domain walls exists,

and that the flat space instanton solution, which exists below the Divide, approaches the

domain wall solution at this critical value. Above the divide, the flat space instanton

and the associated large instantons for small vF , disappear. Flat space is stable, and the

stability of nearly flat dS spaces has a clear entropic explanation.
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6. Below the great divide

In [1], along with the conjecture of a discontinuity of the tunneling action at VF → 0 came a

(retrospectively flawed) physical argument to explain the discontinuity, based on the phys-

ical picture of quantized dS space adumbrated in [9]. In that picture, quantized dS space

is equipped with two operators: the static Hamiltonian H, and the Poincare Hamiltonian

P0; these satisfy a finite-dimensional approximation to the commutation relation

[H,P0] ∼
1

R
P0, (6.1)

where R is the de Sitter radius. The eigenvalues of H are highly degenerate, and bounded

by something of order the dS temperature, TdS = 1
2πR . The low-lying eigenstates of P0

are metastable (when evolved using H), and correspond to states localized in a given

horizon volume; the lowest lying eigenstates have small degeneracies, and the ground state

is unique. The conjectured discontinuity in the tunneling probability was alleged to be

related to the fact that the for finite VF the CDL instanton describes the decay of the

thermal ensemble of H eigenstates (a system of high-entropy), but that for vanishing VF it

describes the decay of a low-entropy system consisting just of the single P0 ground state.

The flaw in this argument is that it hypothesizes both a stable P0 eigenstate, and also

the decay of that stable system. That is, the existence of the CDL instanton for potentials

below the great divide is, in fact, evidence that these low energy effective theories do not

correspond to limits of theories describing asymptotically flat space-time.

The conformal boundary of the Lorentzian continuation of the CDL instanton is not

the same as that of Minkowski space: in the usual parametrization (u,Ω) of future null

infinity, I+, in terms of a null coordinate u and a transverse sphere, the boundary becomes

geodesically incomplete because the asymptotic bubble wall hits I+ at a finite value of u.

Neither the Lorentz group (consisting of the conformal group of the sphere accompanied

by a rescaling of u) nor the time translation group (the generator of which is just P0 = ∂
∂u ,

in a particular Lorentz frame) is an asymptotic symmetry of this spacetime. Thus, the

“explanation” of an hypothetical discontinuity in [1] was based on an equally hypothetical

operator P0. Neither exists.

If potentials below the Great Divide do not correspond to effective theories of gravity

in asymptotically flat space, what do they correspond to? Two possibilities consistent with

the authors’ current understanding of quantum gravity are:

1. Nothing. That is, there simply are no theories of quantum gravity which give rise to

such potentials.

2. These theories correspond to models of quantum gravity which, in the VF → 0

limit under consideration, actually contain only a finite number of excitations of

the Minkowski solution. This would remove the apparent contradiction between the

infinite number of states of the would-be asymptotically flat space and the finitely

bounded entropy of the maximal-area causal diamond in the Big Crunch.

The confusion may be simplified enormously if the conjecture of [10] is accepted. Ac-

cording to that hypotheses, the only viable quantum theories of asymptotically flat space
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time are exactly supersymmetric, and all models with a vacuum energy that can be tuned

to be arbitrarily small become exactly supersymmetric in that limit. At the moment, this

conjecture is valid for all models which have been derived from string theory in a reliable

manner. The whole concept of the Great Divide is defined in terms of one-parameter fam-

ilies of potentials, with vacuum energy that can be tuned to zero. The conjecture of [10]

thus implies that all valid models of quantum gravity will fall above the Great Divide;

which is hypothesis 1 above.

7. Connections with eternal inflation

In [1], two of the authors proposed a regulated model of eternal inflation for potential

landscapes with only non-vanishing vacuum energies. According to that model the system

has a finite number of quantum states, and for most of its time evolution it resembles

the dS space of lowest positive vacuum energy7. This model remains valid for potentials

above the Great Divide. For such potentials, tunneling amplitudes out of dS space are

suppressed in a way which may be attributable to the principle of detailed balance, and

entropic effects.

To be more precise, for a potential with multiple minima, if the minimum with smallest

positive vacuum energy becomes absolutely stable as that vacuum energy is tuned to zero

by subtraction, then the CDL tunneling amplitudes are consistent with an interpretation in

which eternal inflation on the potential landscape is a finite-dimensional quantum system,

most of states of which resemble the dS space of smallest positive vacuum energy. “Decays”

of this state into negative vacuum energy Big Crunch regions will occur, but in such an

interpretation would be viewed as improbable, low entropy fluctuations of a system that

spends most of its time as a large radius dS space.

We also want to comment on the remark of [2] that this kind of landscape is ruled out

by observation. This is based on the paper of Dyson et. al [11], which is itself a variation on

the “Boltzmann’s brain” paradox. This paradox arises if we attribute a state in our past to

a downward fluctuation from a high-entropy state. It would then be much more probable

for our past (given what we observe now) to consist of a smaller fluctuation downward in

entropy into the universe ten minutes ago. 8

References [11] and [2] argue that this paradox is not solved by a model in which the

universe is a random fluctuation of a finite system with time-independent Hamiltonian.

Even if tunneling to negative vacuum energy is suppressed as above the Great Divide,

however, there are a number of possible resolutions to this paradox, some well-developed,

which we will enumerate here:

7If the minimum with lowest absolute value of the vacuum energy is negative, then this statement might

be corrected to ”for most of the period during which local observers exist it resembles the dS space of lowest

positive vacuum energy”.
8This paradox is closely related to the observation stressed by Penrose [12] (among others) that there is

a contradiction between the claim that the initial conditions for the universe are “generic” (as often claimed

is allowed by inflation) and the obseravtion that they are of lower-entropy than the current universe (as

demonstrated by the second law of thermodynamics).
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• The transitions rates between vacua may not obey detailed balance [13]. This would

be the case if the Farhi-Guth-Guven tunneling mechanism is allowed, and would

subvert the paradox by allowing a small inflating region to form, with relatively high

probability. This region would then create a large, low-entropy region. Whether the

Farhi-Guth-Guven process actually occurs, however, is not clear (see, e.g., [14, 15]).

• The description of the universe as a finite system that can equilibrate is insufficient.

Since the region within the horizon does apparently approach equilibrium, this would

indicate that regions outside the horizon must be taken into consideration in the

overall predictions of the theory. In this view, inflation, while difficult to start from

a low-energy vacuum, would “get credit” for creating a huge number of observers, so

that most observers see inflation in their past. The following argument suggests that

there is something wrong with the “causal patch” picture. Consider a multi-vacuum

system with a vanishing lowest vacuum energy. According to [2], no paradox arises

because tunneling out of the zero-energy vacuum is completely suppressed. Then it

would be hard to see how, if the minimal vacuum energy were tuned upward by an

infinitesimal amount, this could discontinuously change the observables so that the

theory would be ruled out. Continuity as Λ → 0 (for which the authors have a greater

respect than ever before) implies that either the paradox arises in both cases, or in

neither.

• The Hamiltonian of the universe may be time dependent and only asymptote to the

static Hamiltonian of the dS observer. A particular model of this is holographic

cosmology [16], where, at early times the Hamiltonian does not couple the degrees

of freedom within the particle horizon of an observer to those outside it. This is the

way in which a non-local, holographic theory can be compatible with the idea of a

particle horizon. In such a theory, time has a beginning, and the first recurrence

time of an asymptotically dS universe is special since its evolution is not governed

by the static dS Hamiltonian. It might be that the explanation of what we see today

depends crucially on the time dependence of the dynamics of the early universe.

Further recurrences might never produce a universe remotely like our own and might

be argued to be irrelevant. The picture of our past as a low entropy fluctuation

of a time independent system is what leads to the Boltzmann’s brain paradox. It

may simply be wrong. This is not a claim that holographic cosmology has (as yet)

solved the Boltzmann’s brain paradox, but merely that the solution might involve

time-dependent dynamics in the early universe.

8. Conclusions

We have seen that there is a rich variety of behaviors of instantons describing the transition

from positive or zero energy false vacuum to a negative energy Big Crunch. The complete

picture is more detailed than was conjectured in [1], and different than the conventional

(thin-wall) wisdom suggests. For small values of ε, we have shown that there does exist an

instanton which resembles Euclidean de Sitter over most of its volume. As the false vacuum
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energy is taken to zero, the instanton action scales with the background subtraction, and

there is no discontinuity in the tunneling rate. However, the analytically continued bubble

wall removes a section of the conformal boundary of Minkowski space, providing evidence

that low energy effective theories with small ε do not correspond to limits of theories

describing truly asymptotically flat space-time.

We have found that there exists a static domain wall solution at a critical value of

ε (εc). The critical value of ε corresponds to a Great Divide in the space of potentials,

of codimension one. Below εc, we find the behavior described in the previous paragraph.

Above this value of ε, we find compact instantons which do not resemble Euclidean de

Sitter. The instanton action approaches a constant as the false vacuum energy goes to

zero, but the discontinuity claimed in [1] does not exist. We find that there is no non-

compact instanton describing the decay of the zero-energy false vacuum, and therefore as

the false vacuum energy is decreased, the diverging background subtraction will cause an

infinite suppression of the tunneling rate.

The other observation of [1] which remains unchanged by our new results is the remark

that metastable SUSY violating vacua of flat space field theories can be viable models of

the real world, within the context of Cosmological SUSY Breaking. That is, if we assume

that the vacuum energy is tunable and that the limit of vanishing vacuum energy is a

supersymmetric theory in asymptotically flat space, then we are above the Great Divide.

For finite Λ the probability for the meta-stable vacuum to make a transition to a Big Crunch

is of order e−π(RMP )2 . This is not a decay, and it has no phenomenological relevance.

Our new results raise interesting questions about the interpretation of models below

the Great Divide. The study of these models will be the subject of a future paper.
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